Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 17(8): e0273340, 2022.
Article in English | MEDLINE | ID: covidwho-2002326

ABSTRACT

OBJECTIVE: The aim of the study was to assess inflammatory markers and clinical outcomes in adult patients admitted to hospital with mild-to-moderate COVID-19 and treated with a combination of standard-of-care (SOC) and targeted immunosuppressive therapy including anti-IL-17A (netakimab), anti-IL-6R (tocilizumab), or JAK1/JAK2 inhibitor (baricitinib) or with a standard-of-care therapy alone. METHODS: The observational cohort study included 154 adults hospitalized between February and August, 2020 with RT-PCR-confirmed SARS-CoV-2 with National Early Warning Score2 (NEWS2) < 7 and C-reactive protein (CRP) levels ≤ 140 mg/L on the day of the start of the therapy or observation. Patients were divided into the following groups: I) 4 mg baricitinib, 1 or 2 times a day for an average of 5 days (n = 38); II) 120 mg netakimab, one dose (n = 48); III) 400 mg tocilizumab, one dose (n = 34), IV) SOC only: hydroxychloroquine, antiviral, antibacterial, anticoagulant, and dexamethasone (n = 34). RESULTS: CRP levels significantly decreased after 72 h in the tocilizumab (p = 1 x 10-5) and netakimab (p = 8 x 10-4) groups and remained low after 120 h. The effect was stronger with tocilizumab compared to other groups (p = 0.028). A significant decrease in lactate dehydrogenase (LDH) levels was observed 72 h after netakimab therapy (p = 0.029). NEWS2 scores significantly improved 72 h after tocilizumab (p = 6.8 x 10-5) and netakimab (p = 0.01) therapy, and 120 h after the start of tocilizumab (p = 8.6 x 10-5), netakimab (p = 0.001), or baricitinib (p = 4.6 x 10-4) therapy, but not in the SOC group. Blood neutrophil counts (p = 6.4 x 10-4) and neutrophil-to-lymphocyte ratios (p = 0.006) significantly increased 72 h after netakimab therapy and remained high after 120 h. The percentage of patients discharged 5-7 days after the start of therapy was higher in the tocilizumab (44.1%) and netakimab (41.7%) groups than in the baricitinib (31.6%) and SOC (23.5%) groups. Compared to SOC (3 of the 34; 8.8%), mortality was lower in netakimab (0 of the 48; 0%, RR = 0.1 (95% CI: 0.0054 to 1.91)), tocilizumab (0 of the 34; 0%, RR = 0.14 (95% CI: 0.0077 to 2.67)), and baricitinib (1 of the 38; 2.6%, RR = 0.3 (95% CI: 0.033 to 2.73)) groups. CONCLUSION: In hospitalized patients with mild-to-moderate COVID-19, the combination of SOC with anti-IL-17A or anti-IL-6R therapy were superior or comparable to the combination with JAK1/JAK2 inhibitor, and all three were superior to SOC alone. Whereas previous studies did not demonstrate significant benefit of anti-IL-17A therapy for severe COVID-19, our data suggest that such therapy could be a rational choice for mild-to-moderate disease, considering the generally high safety profile of IL-17A blockers. The significant increase in blood neutrophil count in the netakimab group may reflect efflux of neutrophils from inflamed tissues. We therefore hypothesize that neutrophil count and neutrophil-to-lymphocyte ratio could serve as markers of therapeutic efficiency for IL-17A-blocking antibodies in the context of active inflammation.


Subject(s)
COVID-19 Drug Treatment , Adult , Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Azetidines , Humans , Purines , Pyrazoles , SARS-CoV-2 , Sulfonamides , Treatment Outcome
2.
Hum Vaccin Immunother ; : 2101334, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1967806

ABSTRACT

The article highlights the course of long-term SARS-CoV-2 infection in a patient with a secondary immunodeficiency developed with B-cell-depleting therapy of the underlying disease. Analysis of the intrapatient virus evolution revealed an inpatient S:G75A mutation that alters the 72GTNGTKR78 motif of the S-protein, with a possible role in binding to alternative cellular receptors. Therapy with a ready-made COVID-19-globulin preparation (native human immunoglobulin G (IgG) derived from the plasma of convalescent COVID-19-patients) resulted in rapid improvement of the patient's condition, fast, and stable elimination of the virus, and passive immunization of the patient for at least 30 days. The results suggest the use of products containing neutralizing antibodies opens new prospects for treatment algorithms for patients with persistent coronavirus infection, as well as for passive immunization schemes for patients with a presumably reduced specific response to vaccination.

SELECTION OF CITATIONS
SEARCH DETAIL